Uniquely circular colourable and uniquely fractional colourable graphs of large girth
نویسندگان
چکیده
Given any rational numbers r ≥ r′ > 2 and an integer g, we prove that there is a graph G of girth at least g, which is uniquely circular r-colourable and uniquely fractional r′-colourable. Moreover, the graph G has maximum degree bounded by a number which depends on r and r′ but does not depend on g.
منابع مشابه
Uniquely D-colourable Digraphs with Large Girth
Let C and D be digraphs. A mapping f : V (D) → V (C) is a Ccolouring if for every arc uv of D, either f(u)f(v) is an arc of C or f(u) = f(v), and the preimage of every vertex of C induces an acyclic subdigraph in D. We say that D is C-colourable if it admits a C-colouring and that D is uniquely Ccolourable if it is surjectively C-colourable and any two C-colourings of D differ by an automorphis...
متن کاملUniquely Colourable Graphs and the Hardness of Colouring Graphs of Large Girth
For any integer k, we prove the existence of a uniquely k-colourable graph of girth at least g on at most k 12(g+1) vertices whose maximal degree is at most 5k 13. From this we deduce that, unless NP=RP, no polynomial time algorithm for k-Colourability on graphs G of girth g(G) log jGj 13 log k and maximum degree (G) 6k 13 can exist. We also study several related problems.
متن کاملA Note on Uniquely H-colourable Graphs
For a graph H, we compare two notions of uniquely H-colourable graphs, where one is defined via automorphisms, the second by vertex partitions. We prove that the two notions of uniquely H-colourable are not identical for all H, and we give a condition for when they are identical. The condition is related to the first homomorphism theorem from algebra.
متن کاملA note on uniquely H-colorable graphs
For a graph H, we compare two notions of uniquely H-colourable graphs, where one is defined via automorphisms, the second by vertex partitions. We prove that the two notions of uniquely H-colourable are not identical for all H, and we give a condition for when they are identical. The condition is related to the first homomorphism theorem from algebra.
متن کاملEvery circle graph of girth at least 5 is 3-colourable
It is known that every triangle-free (equivalently, of girth at least 4) circle graph is 5-colourable (Kostochka, 1988) and that there exist examples of these graphs which are not 4-colourable (Ageev, 1996). In this note we show that every circle graph of girth at least 5 is 2-degenerate and, consequently, not only 3-colourable but even 3-choosable.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Contributions to Discrete Mathematics
دوره 1 شماره
صفحات -
تاریخ انتشار 2006